Top 10k strings from Matrix Operations (1983)(University Software)[a].tzx
in <root> / bin / z80 / software / Sinclair Spectrum Collection TOSEC.exe / Sinclair ZX Spectrum - Utilities & Educational / Sinclair ZX Spectrum - Utilities & Educational - [TZX] (TOSEC-v2007-01-01) /
Back to the directory listing
7 copyright 1983 UNIVERSITY SOFTWARE ** 6 ;"matrix 2:": 6 ;"2000 LET f(1)=SIN x": 4 w=a(k,m)+a(i,m): 4 a(i,k)>1e-8 4 ;"matrix:": 4 ;"matrix 1:": 4 ;"Please wait" 4 ("matrix elements:"," row ";(i);",column ";(j);": ");x: 3 dx=(u-l)/208 3 a(i,j)=a(i,r+j) 3 ;"singular matrix" 3 ;"cannot be inverted": 3 ;"Enter two functions in terms of x giving statement numbers betw. 2000 and 2010. e.g.:": 3 ;"2005 LET f(2)=x^3-12*x^2+6*x+8": 3 ;"2005 LET f(2)=0": 3 -(ly/(ly-hy))*18 3 +(ly/(ly-hy))*144 3 *** Enter functions *** 3 ** Enter ~GOTO 200~ ** 3 ("Press ENTER to continue "); 3 ("Enter the limits of interval to be plotted(lower,upper): ");l;",";u: 2 t$="value of scalar: ": 2 s=z*a(k,j)+a(i,j): 2 s=a(i,k)/a(k,k): 2 g=g+f(j)*p: 2 g(i)=((f(i)-ly)/(hy-ly))*144 2 e=e+a(i,k)*b(k,j): 2 e=a(i,j)-b(i,j) 2 e=a(i,j)+b(i,j) 2 e=a(i,j)*n 2 d=d*a(k,k): 2 b(i,j)=a(i,r+j) 2 b(i,j)=a(i,d+j) 2 a(k,k)<1e-8 2 a(k,j)=a(k,j)/z: 2 a(i,r+j)=0 2 a(i,r+i)=1 2 a(i,j)=a(i,j)-s*a(k,j): 2 a(i,j)=a(i,d+j) 2 a(i,d+j)=e 2 PLOT OF INTEGRATION 2 Matrix dimension: ": 2 MATRIX OPERATIONS 2 DETERMINANT OF A SQUARE MATRIX 2 ;"singular matrix": 2 ;"no of rows must be equal to no of columns": 2 ;"no of columns of matrix 1 must be equal to no of rows of mat.2": 2 ;"matrix X scalar:" 2 ;"matrix 1:" 2 ;"matrix 1 and matrix 2 dimensionsmust be equal" 2 ;"matrix 1 X matrix 2:" 2 ;"matrix 1 - matrix 2:" 2 ;"matrix 1 + matrix 2:" 2 ;"inverse:": 2 ;"f(";i;")": 2 ;"enter new dimensions": 2 ;"To plot one function only, set f(2)=0 e.g.:": 2 ;"Remember that some functions (e.g.LN,SQR,^) may give error report A for negative values of x." 2 ;"Polynomial:": 2 ;"(";f(j);")x^";j-1 2 ;" ": 2 -((m(i)-12 2 *a(i,k))/a(k,k): 2 );":");f(j): 2 (d*a(r,r)*1e5 2 (b(i,j)*1e6 2 (a(i,r+j)*1e6 2 (a(i,j)*1e6 2 ("matrix dimensions:"," (row,column): ");r(1 2 ("matrix ";(m);" dimensions:"," (row,column): ");r(m);",";c(m) 2 ("degree of polynomial: ");n: 2 ("coefficient ";(j-1 2 ("Row ";(i);",Column ";(k);": ");x: 2 "want to change data?(y/n) "; 2 "row:";i;",column:";j: 2 "operations" 2 "Determinant=";: 2 Copyright 1983 University Software ** 1 z=(-a(i,k+d))/a(k,k+d): 1 x=l-dx-1e-8 1 w=a(k,o+d)+a(i,o+d): 1 value of scalar: K 1 t=((g-ly)/(hy-ly))*144 1 s=z*a(k,j+d)+a(i,j+d): 1 roots 1 pplot j 1 operation2 1 iplot2 D 1 iplot 1 integral2 S 1 h=h*a(k,k+d): 1 g(i)=g(i)+f(i)/2 1 g(i)=g(i)+f(i) 1 f=f+f(i)*b: 1 e(i)=e(i)+f(i): 1 e(i)=e(i)+4 1 e(i)=e(i)+2 1 dx=(u-l)/d: 1 dx=(u-l)/100 1 det2 " 1 det 1 d=d+d(i)*b: 1 d(j)=f(j+1 1 b(i,j)=a(i,j): 1 a(k,o+d)=w: 1 a(k,k+d)<1e-8 1 a(i,k+d)>1e-8 1 a(i,j+d)=s: 1 a(i,j+d)=a(i,j): 1 a(i,j)=b(i,j): 1 REAL ROOTS OF POLYNOMIALS 1 PLOT OF POLYNOMIALS 1 Matrix dimension: | 1 Matrix dimension: 1 MATEMATICSH& 1 INTEGRATION 1 ;b(i,j);" ";: 1 ;a(i,j);" ";: 1 ;"to invert matrix must be square": 1 ;"root 2="; 1 ;"root 1="; 1 ;"no root is found": 1 ;"no real roots": 1 ;"integral f(";i;"):";: 1 ;"for determinant matrix should besquare": 1 ;"f(x)=";: 1 ;"enter sm for scalar mult." 1 ;"enter s for subtraction" 1 ;"enter m for multiplication" 1 ;"enter i for inversion" 1 ;"enter a for addition" 1 ;"To integrate one function only, set f(2)=0 e.g.:": 1 ;"Simpsons trapezoid" 1 ;"Remember that some functions (e.g.LN,SQR,^) may give error report for negative values of x." 1 ;"QUADRATIC EQUATIONS": 1 ;"NEWTON~S METHOD OF APPROXIMATION": 1 ;"Interval:"; 1 ;"Initial value="; 1 ;"HALF-INTERVAL SEARCH METHOD": 1 ;"Functions:";: 1 ;"Enter coefficients in the order of degrees;i.e.constant:0,coeff.of x:1,...,coeff.of x^n:n." 1 ;"Determinant: ";: 1 ;"Area enclosed ": 1 ;"(";l;",";u;")"; 1 ;"(";l;",";u;")": 1 ;" interval:"; 1 ;" Root="; 1 ;" f(1) & f(2):" 1 ;" derivative=0": 1 ;" derivative="; 1 ;" between ": 1 ;" root="; 1 ;" ";: 1 ;" ": 1 ;" ": 1 ;" " 1 ** reports for inappropiate matrix dimensions ** 1 );")x+(";f(1 1 );")x+";f(1 1 (h*a(r,r+d)*1e5 1 (g(i)*dx*1e3 1 (((e(i)*dx)/3 1 ("z:copy,i:interval,f:function "); 1 ("value of element (";i;",";j;"): ");b(i,j) 1 ("value of element (";i;",";j;"): ");a(i,j) 1 ("n:Newton-Raphson method h:half-interval search method: "); 1 ("enter z to copy, enter i for another interval "); 1 ("enter z to copy enter i for a new interval enter f for new functions "); 1 ("choose no of new matrix(1/2): ");m: 1 ("choose no of new matrix(1/2): ");m 1 ("Will you try half-interval search method? (y/n): "); 1 ("Will you try another initial value? (y/n): "); 1 ("Will you continue iterations? (y/n): "); 1 ("Enter z to copy, Enter i for another interval "); 1 ("Enter the limits of interval (lower,upper): ");l;",";u: 1 "z:copy,r:new determinant "; 1 "will you try another interval? (y/n): "; 1 "will you try Newton~s method? (y/n): "; 1 "s:subtraction" 1 "m:multiplication" 1 "l:scalar multiplication" 1 "integral" 1 "i:inversion" 1 "i,m,a,s,l,d,(h).z:copy,r:input"; 1 "enter the limits of interval (lower,upper): ";l;",";u: 1 "enter a key for new polynomial"; 1 "d:determinant" 1 "a:addition" 1 "In case of difficulty in remembering the correct letter enter h (abbreviated for help).": 1 "Enter z to copy,r for another determinant "; 1 "Enter z to copy,c for another operation with resultant matrix,r for another problem,s to stop"; 1 "Enter coefficients in the order of degrees;i.e.constant:0,coeff.of x:1,...,coeff.of x^n:n." 1 "Enter an initial value: ";e: 1 "After each operation one of the following letters can directly be entered for the next operation." 1 " ":