Top 10k strings from Matrix Operations (1983)(University Software)[a].tzx in <root> / bin / z80 / software / Sinclair Spectrum Collection TOSEC.exe / Sinclair ZX Spectrum - Utilities & Educational / Sinclair ZX Spectrum - Utilities & Educational - [TZX] (TOSEC-v2007-01-01) /
Back to the directory listing
7 copyright 1983 UNIVERSITY SOFTWARE **
6 ;"matrix 2:":
6 ;"2000 LET f(1)=SIN x":
4 w=a(k,m)+a(i,m):
4 a(i,k)>1e-8
4 ;"matrix:":
4 ;"matrix 1:":
4 ;"Please wait"
4 ("matrix elements:"," row ";(i);",column ";(j);": ");x:
3 dx=(u-l)/208
3 a(i,j)=a(i,r+j)
3 ;"singular matrix"
3 ;"cannot be inverted":
3 ;"Enter two functions in terms of x giving statement numbers betw. 2000 and 2010. e.g.:":
3 ;"2005 LET f(2)=x^3-12*x^2+6*x+8":
3 ;"2005 LET f(2)=0":
3 -(ly/(ly-hy))*18
3 +(ly/(ly-hy))*144
3 *** Enter functions ***
3 ** Enter ~GOTO 200~ **
3 ("Press ENTER to continue ");
3 ("Enter the limits of interval to be plotted(lower,upper): ");l;",";u:
2 t$="value of scalar: ":
2 s=z*a(k,j)+a(i,j):
2 s=a(i,k)/a(k,k):
2 g=g+f(j)*p:
2 g(i)=((f(i)-ly)/(hy-ly))*144
2 e=e+a(i,k)*b(k,j):
2 e=a(i,j)-b(i,j)
2 e=a(i,j)+b(i,j)
2 e=a(i,j)*n
2 d=d*a(k,k):
2 b(i,j)=a(i,r+j)
2 b(i,j)=a(i,d+j)
2 a(k,k)<1e-8
2 a(k,j)=a(k,j)/z:
2 a(i,r+j)=0
2 a(i,r+i)=1
2 a(i,j)=a(i,j)-s*a(k,j):
2 a(i,j)=a(i,d+j)
2 a(i,d+j)=e
2 PLOT OF INTEGRATION
2 Matrix dimension: ":
2 MATRIX OPERATIONS
2 DETERMINANT OF A SQUARE MATRIX
2 ;"singular matrix":
2 ;"no of rows must be equal to no of columns":
2 ;"no of columns of matrix 1 must be equal to no of rows of mat.2":
2 ;"matrix X scalar:"
2 ;"matrix 1:"
2 ;"matrix 1 and matrix 2 dimensionsmust be equal"
2 ;"matrix 1 X matrix 2:"
2 ;"matrix 1 - matrix 2:"
2 ;"matrix 1 + matrix 2:"
2 ;"inverse:":
2 ;"f(";i;")":
2 ;"enter new dimensions":
2 ;"To plot one function only, set f(2)=0 e.g.:":
2 ;"Remember that some functions (e.g.LN,SQR,^) may give error report A for negative values of x."
2 ;"Polynomial:":
2 ;"(";f(j);")x^";j-1
2 ;" ":
2 -((m(i)-12
2 *a(i,k))/a(k,k):
2 );":");f(j):
2 (d*a(r,r)*1e5
2 (b(i,j)*1e6
2 (a(i,r+j)*1e6
2 (a(i,j)*1e6
2 ("matrix dimensions:"," (row,column): ");r(1
2 ("matrix ";(m);" dimensions:"," (row,column): ");r(m);",";c(m)
2 ("degree of polynomial: ");n:
2 ("coefficient ";(j-1
2 ("Row ";(i);",Column ";(k);": ");x:
2 "want to change data?(y/n) ";
2 "row:";i;",column:";j:
2 "operations"
2 "Determinant=";:
2 Copyright 1983 University Software **
1 z=(-a(i,k+d))/a(k,k+d):
1 x=l-dx-1e-8
1 w=a(k,o+d)+a(i,o+d):
1 value of scalar: K
1 t=((g-ly)/(hy-ly))*144
1 s=z*a(k,j+d)+a(i,j+d):
1 roots
1 pplot j
1 operation2
1 iplot2 D
1 iplot
1 integral2 S
1 h=h*a(k,k+d):
1 g(i)=g(i)+f(i)/2
1 g(i)=g(i)+f(i)
1 f=f+f(i)*b:
1 e(i)=e(i)+f(i):
1 e(i)=e(i)+4
1 e(i)=e(i)+2
1 dx=(u-l)/d:
1 dx=(u-l)/100
1 det2 "
1 det
1 d=d+d(i)*b:
1 d(j)=f(j+1
1 b(i,j)=a(i,j):
1 a(k,o+d)=w:
1 a(k,k+d)<1e-8
1 a(i,k+d)>1e-8
1 a(i,j+d)=s:
1 a(i,j+d)=a(i,j):
1 a(i,j)=b(i,j):
1 REAL ROOTS OF POLYNOMIALS
1 PLOT OF POLYNOMIALS
1 Matrix dimension: |
1 Matrix dimension:
1 MATEMATICSH&
1 INTEGRATION
1 ;b(i,j);" ";:
1 ;a(i,j);" ";:
1 ;"to invert matrix must be square":
1 ;"root 2=";
1 ;"root 1=";
1 ;"no root is found":
1 ;"no real roots":
1 ;"integral f(";i;"):";:
1 ;"for determinant matrix should besquare":
1 ;"f(x)=";:
1 ;"enter sm for scalar mult."
1 ;"enter s for subtraction"
1 ;"enter m for multiplication"
1 ;"enter i for inversion"
1 ;"enter a for addition"
1 ;"To integrate one function only, set f(2)=0 e.g.:":
1 ;"Simpsons trapezoid"
1 ;"Remember that some functions (e.g.LN,SQR,^) may give error report for negative values of x."
1 ;"QUADRATIC EQUATIONS":
1 ;"NEWTON~S METHOD OF APPROXIMATION":
1 ;"Interval:";
1 ;"Initial value=";
1 ;"HALF-INTERVAL SEARCH METHOD":
1 ;"Functions:";:
1 ;"Enter coefficients in the order of degrees;i.e.constant:0,coeff.of x:1,...,coeff.of x^n:n."
1 ;"Determinant: ";:
1 ;"Area enclosed ":
1 ;"(";l;",";u;")";
1 ;"(";l;",";u;")":
1 ;" interval:";
1 ;" Root=";
1 ;" f(1) & f(2):"
1 ;" derivative=0":
1 ;" derivative=";
1 ;" between ":
1 ;" root=";
1 ;" ";:
1 ;" ":
1 ;" ":
1 ;" "
1 ** reports for inappropiate matrix dimensions **
1 );")x+(";f(1
1 );")x+";f(1
1 (h*a(r,r+d)*1e5
1 (g(i)*dx*1e3
1 (((e(i)*dx)/3
1 ("z:copy,i:interval,f:function ");
1 ("value of element (";i;",";j;"): ");b(i,j)
1 ("value of element (";i;",";j;"): ");a(i,j)
1 ("n:Newton-Raphson method h:half-interval search method: ");
1 ("enter z to copy, enter i for another interval ");
1 ("enter z to copy enter i for a new interval enter f for new functions ");
1 ("choose no of new matrix(1/2): ");m:
1 ("choose no of new matrix(1/2): ");m
1 ("Will you try half-interval search method? (y/n): ");
1 ("Will you try another initial value? (y/n): ");
1 ("Will you continue iterations? (y/n): ");
1 ("Enter z to copy, Enter i for another interval ");
1 ("Enter the limits of interval (lower,upper): ");l;",";u:
1 "z:copy,r:new determinant ";
1 "will you try another interval? (y/n): ";
1 "will you try Newton~s method? (y/n): ";
1 "s:subtraction"
1 "m:multiplication"
1 "l:scalar multiplication"
1 "integral"
1 "i:inversion"
1 "i,m,a,s,l,d,(h).z:copy,r:input";
1 "enter the limits of interval (lower,upper): ";l;",";u:
1 "enter a key for new polynomial";
1 "d:determinant"
1 "a:addition"
1 "In case of difficulty in remembering the correct letter enter h (abbreviated for help).":
1 "Enter z to copy,r for another determinant ";
1 "Enter z to copy,c for another operation with resultant matrix,r for another problem,s to stop";
1 "Enter coefficients in the order of degrees;i.e.constant:0,coeff.of x:1,...,coeff.of x^n:n."
1 "Enter an initial value: ";e:
1 "After each operation one of the following letters can directly be entered for the next operation."
1 " ":